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Abstract  Studies of reef fish assemblages in space rarely consider the effects of temporal 

variability on spatial comparisons, and when they do, usually examine timescales of months 

to years. The nature of fish monitoring surveys is such that particular locations may be 

surveyed at one time of day, and surveys designed to establish the degree of spatial variability 

in assemblages may be confounded if the order of sampling within treatments is not 

randomised with respect to time of day. In this study, we tested the degree of temporal 

variability in temperate reef fish counts at the same sites in New Zealand and Italy, within and 

between days. Repeated counts separated by months returned quite different assemblages, 

whereas counts separated by days did not. Although overall assemblage structure did not 

generally differ significantly with time of day, at some locations there was evidence of 

changes in the relative density of certain species in the afternoon relative to the morning. Care 

must be taken not to introduce systematic bias to spatial comparisons due to behavioural 

variability in fishes at differing times of day.  

 

Keywords:  survey bias, marine reserve, monitoring, reef fishes, spatial pattern, temperate 

reef, temporal variability 
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1. Introduction 

 

In surveys of reef fishes, it has not been often acknowledged that differences in the behaviour 

of fishes at different times of day may potentially influence relative density estimates (Colton 

& Alevizon 1981; Spyker & van den Berghe 1995). While some aspects of temporal 

variability in abundance or behaviour that operate over annual or seasonal time scales, such as 

recruitment, the formation of spawning aggregations or seasonal migration (Williams 1983, 

Tolimieri et al. 1998, Hyndes et al. 1999) may be more obvious, others may be subtle and 

operate over shorter time scales of hours to days. Reproductive behaviour can cause fish to 

aggregate and disperse at specific localities within a day (e.g. Samoilys 1997), and the timing 

of such aggregations can vary considerably between species and mating systems (Colin & 

Bell 1991). Peaks in feeding activity may vary diurnally (Polunin & Klumpp 1989) and affect 

spatial distributions (Ogden & Buckman 1973; Warner 1995; Milazzo et al. 2005), or 

distributions of fishes may be influenced by the state of the tide. In particular, reef-associated 

planktivores tend to distribute themselves according to the availability of their food supply, 

and changing tidal or wind-driven currents can have marked effects (Kingsford & 

MacDiarmid 1988, Badalamenti 1990). It is well known that most marine habitats contain fish 

species that exhibit marked crepuscular peaks in activity or changes in distribution (e.g. 

Hobson 1965, Ebeling & Bray 1976, Colton & Alevizon 1981, Doherty 1983). 

 

The nature of fish monitoring surveys designed to detect spatial pattern at medium to large 

spatial scales is such that particular locations are generally surveyed one by one by a diver or 

group of divers, and therefore counts from any particular site are usually available from only 

one time of day (e.g. Choat et al. 1988; Willis et al. 2000; Gust et al. 2001; Anderson & 

Millar 2004; and practically all other studies ever published). Replicating counts at the same 

location at a different time within the same survey is generally beyond the scope of most 

studies, as it means sacrificing spatial replication and stretching the resources available to 

complete the survey. 

 

If different sites within treatments (e.g. location, habitat type, protection status) are 

randomised with respect to time-of-day, any effect of differing behaviour or activity level in 

the fish would not be expected to influence between-treatment comparisons. However, 

changing weather conditions or logistic considerations may mean that complete 

randomisation of sites with respect to time may not always be possible. Factoring out bias 
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related to the time of day may require high site-level replication within treatments, given the 

normally high between-transect variability seen in reef fish counts. Certainly, differences in 

the time of day when transects are conducted may confound between-location comparisons 

within particular treatments, or increase within-treatment variability such that the statistical 

power of between-treatment comparisons is significantly reduced.  

 

Few published studies to date have conducted repeated counts of fish assemblages at the same 

sites over short time scales with the specific aim of assessing within-day variability (but see 

Colton & Alevizon 1981; Spyker & Vanden Berghe 1995; De Girolamo & Mazzoldi 2001; 

Thompson & Mapstone 2002). These studies did not detect significant short-term temporal 

variability in assemblages of temperate and coral-reef fishes on time scales of days to weeks. 

However, there was evidence of systematic within-day variability in the detectability of 

certain species. In this study, done on temperate reefs in New Zealand and Italy, sites were 

surveyed two or three times during the same day by divers using visual transect counts, to 

determine whether time-of-day influenced estimates of density and assemblage structure for 

making spatial comparisons. In New Zealand, two of the four sites were surveyed three days 

prior, to determine if there was significant between-day variability within the same survey 

period. In Italy, counts were repeated after 3 months to determine the extent of medium-term 

temporal variability. 

 

2. Materials and methods 

 

2.1 New Zealand 

 

Fish counts were conducted at the Poor Knights Islands, New Zealand (35º26’S, 174º45’E), at 

the beginning (September 1998) of a long-term monitoring study to assess the effects of 

implementing no-take marine reserve protection (Denny et al. 2004). Two teams of 2 divers 

estimated the density of reef-associated fishes using 25 × 5 m strip transects at two “shallow” 

(Nursery Cove, 6-10 m; Aladdins Cave, 7-14 m) and two “deep” (Labyrinth, 18-26 m; Labrid 

Channel, 10-24 m) sites located at the south-western part of the islands. Transects were 

restricted to 25 m in length so as to reduce the likelihood of crossing habitat boundaries. Each 

of the two teams surveyed the same two of the four sites within each time period. Six replicate 

transects (three transects per diver) were done at each site for each time, generally over kelp 

(Ecklonia radiata (C. Agardh) J. Agardh) forest. The same divers surveyed the same transects 
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on each occasion to remove the potential for observer-specific bias to confound temporal 

comparisons. Counts were conducted at c. 0730-0830 hours, and repeated at 1030-1130 and 

1400-1500 hours. To estimate between-day variability in fish counts, two of the sites 

(Labyrinth and Nursery Cove) were surveyed once (at 0900 and 1200 hours, respectively) 

three days prior to the within-day comparisons by the same divers. Water visibility exceeded 

15 m for all counts. Time of sunrise during the sampling period was c. 0610 hours, and time 

of sunset was c. 1820 hours. Transects were conducted by swimming out a tape attached to 

the substratum. Counts began after a 5 m lead-in to avoid counting fish attracted to the diver 

while the tape was affixed. 

 

Very common schooling species that require more specialised census methods (the 

pomacentrid Chromis dispilus, the scorpid Scorpis violaceus, and trachurid Trachurus spp.) 

were omitted from the counts to avoid biasing estimates (from observer error) of demersal 

species that were the focus of the study. 

 

2.2 Italy 

 

Reef-associated fishes were counted at Punta Galera, Ustica Island (38º42’N, 10º43’E) in 

June and September of 2002 using 25 × 5 m transects on rocky reef within two depth ranges: 

one “shallow” (1-8 m) and one “deep” (12-20 m). Transect methodology was identical to the 

New Zealand part of the study. Each team conducted four replicate transects at each depth. In 

June (sunrise c. 0550 hours, sunset c. 2045 hours), counts were conducted in the morning 

from 0900 to 1100 hours and repeated in the afternoon (1630-1830 hours). In September 

(sunrise c. 0700 hours, sunset c. 1925 hours), counts were performed at 0830-1030 and 1600-

1800 hours. Water visibility exceeded 20 m for all counts.  

 

2.3 Data Analyses 

 

New Zealand analyses were done using a mixed-model permutational multivariate analysis of 

variance (PerMANOVA, Anderson 2001a), a method which allows multivariate data to be 

analysed on the basis of any distance measure of choice, with P-values obtained using 

permutations. Since PerMANOVA is sensitive to differences in multivariate dispersion 

between groups (which can inflate Type 1 error even when centroids have identical locations), 

the same models were tested for differences in dispersion using the programme PERMDISP 
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(Anderson in press). Since reef topography at the surveyed locations is complex and 

temperate reef fish assemblages generally have strong relationships with water depth 

(Kingsford 1989; Vacchi et al. 1998; Hyndes et al. 1999; Anderson & Millar 2004), the 

effects of site and time of day on counts were tested with depth included in the model as a 

covariate. Site was treated as a random effect, and time of day as a fixed effect. There were 28 

species variables, transformed to y’ = ln(y+1) in all analyses to retain information on relative 

abundances but reduce differences in scale among the variables. The Bray-Curtis dissimilarity 

measure was used for all analyses, and all P-values were calculated using 9999 permutations 

of the residuals under a reduced model (Anderson 2001b). 

 

Data from Italy were collected at one site only, but the within-day counts were repeated after 

3 months. The same model was used as for the New Zealand data, with transect depth 

included in the model as a covariable, but in this case Month was treated as the random factor, 

while Time (morning and afternoon) was fixed. There were 26 species variables, transformed 

to y’ = ln(y+1). Because of a limited number of unique values in the permutation distribution 

for Time of day, the P-value for this factor was estimated using Monte Carlo random draws 

from the asymptotic permutation distribution (Anderson & Robinson 2003). In the case of a 

significant interaction term, pairwise comparisons for all combinations of Time of day and 

Site, or Time of day and Month, were conducted using t-tests. P-values for these were 

corrected for multiple comparisons using the Bonferroni adjustment, which increases the 

probability of Type II error for post-hoc tests.  

 

Differences between times and sites were examined in more detail using canonical analysis of 

principal coordinates (CAP, Anderson & Willis 2003). This analysis performs a canonical 

discriminant analysis on a subset of principal coordinate (PCO) axes from a metric (classical) 

multidimensional scaling (Gower 1966). A major advantage of this method is that, through 

the use of PCO, one can choose to base the constrained (discriminant) analysis on any 

distance measure that is appropriate for the type of dataset and hypotheses being addressed. In 

addition, species responsible for differences among groups can be identified by the strength of 

their correlation with the canonical discriminant axis (Anderson & Willis 2003, Willis & 

Anderson 2003). Only species correlations of |r| > 0.4 from species with frequency of 

occurrence of > 30% were considered significant. 
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3. Results 

 

3.1 New Zealand 

 

In the between-day comparison, there were significant differences between the two sites 

surveyed, but not between the two days, and no significant interaction between them (Table 

1). Tests of multivariate dispersion were not significant for any of the three terms (p > 0.2 in 

all cases). 

 

For the within-day comparisons, the effect of the covariable depth was significant, as was the 

random effect of site. However, the three times did not differ, and the interaction term of 

Time × Site was also not significant (Table 2). Multivariate dispersions differed significantly 

for the effect of Site, but not Time (Table 3) which reinforces the non-significant effect of 

Time, but raises the possibility that the significant effect of Site seen in the PerMANOVA 

was an artefact of variable dispersions. A posteriori pairwise tests of dispersion between sites 

(Bonferroni-adjusted α = 0.008) showed that three of the six possible pairwise comparisons of 

the four sites were significantly different: counts at one of the shallower sites (Aladdins) 

exhibited relatively little variability with an average within-group dissimilarity (WGD) of 

41.1, and was significantly different from Labrid (t = 4.62, P < 0.001) and Labyrinth (t = 4.81, 

P < 0.001). Counts from Aladdins may also have been less variable than from Nursery, but 

were not significant using the adjusted P value (t = 2.73, P = 0.013). Counts from the deepest 

site (Labyrinth) were considerably more variable (WGD = 62.5), and was significantly more 

dispersed than from Nursery (t = 2.72, P = 0.008).  

 

An unconstrained (metric MDS) ordination of the data did not show any clear separation 

between any of the groups (Fig. 1a), despite the significant effect of site in the PerMANOVA. 

The Aladdins site did appear to be less dispersed on the plot than the others (in accordance 

with its low average WGD), but there was no obvious explanation for the site differences, 

except that the Labyrinth counts were ordinated slightly further to the right of the plot. The 

CAP ordination clarified this considerably (Fig 1b). The axis for Time of day could not 

separate any of the three times, and confirmed the lack of significant difference between 

them. The overall leave-one-out correct allocation success in the discriminant analysis was 

34.72% (Table 4), where with three groups a correct allocation success rate of 33% would 

suggest a random distribution. The axis for Site, however, successfully separated the counts at 
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Labyrinth from the other three sites, with 16 of the 18 transect counts (88.9%) correctly 

allocated (Table 4). Labyrinth was the deepest of the four sites, with a mean transect depth of 

18.9 ± 5.3 (sd) m, which was reflected in the depth distributions of the species correlated with 

the Site axis. For example, the pomacentrid Parma alboscapularis, generally found only in 

depths of <10 m, was negatively correlated with the axis, whereas the latrid Nemadactylus 

douglasii, usually seen on or adjacent to deeper reefs, was positively correlated with the axis 

(Table 5). 

 

Since the large amount of variability associated with site effects may have masked time-of-

day effects in the PerMANOVA model, we conducted individual CAP analysis with time as 

the discriminant for each site. There was no difference between any of the times at the 

Nursery Cove and Labyrinth sites, as shown by the mixing of points in the metric MDS plots 

(Fig. 2, left-hand side) and similar distributions along the canonical axis (Fig. 2, right-hand 

side). At Labrid Channel and Aladdins Reef, however, the CAP plots indicated that the third 

set of counts for the day (at 14:00) differed somewhat from the two counts done earlier. At 

Aladdins Reef, this is also reflected by separation of these transects in the metric MDS plot 

(Fig. 2). Correlations of the individual species with the canonical axes indicated that the result 

at Aladdins Reef was primarily due to the presence of N. douglasii in the third count whereas 

it was absent in the first two, a decrease in density of P. alboscapularis, and the 

disappearance of the schooling planktivore Scorpis violaceus (Scorpidae). 

 

Plots of the mean densities individual common species that had impacts on the canonical 

analysis illustrated how temporal variability in relative density was inconsistent between sites 

(Fig. 3). For example, although the goatfish Upeneichthys lineatus appeared to steadily 

increase in density with time at Labyrinth, densities were stable at the other three sites. Coris 

sandageri density increased between the first and second counts at three sites, but decreased 

at Nursery Cove. 

 

A list of species included in the counts and their frequency of occurrence in each time period 

is given Appendix A. Background information on the biology of the individual species may 

be obtained from Francis (2001). 

 

3.2 Italy 
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The depth covariable and random effect of Month were both significant in the PerMANOVA 

(Table 6). The main effect of Time (in this case, morning versus afternoon) was not, but there 

was a significant interaction between Time and Month. Pairwise t-tests for the effect of Time 

within Month were both significant however with a Bonferroni-adjusted significance level of 

α = 0.025 (June: t = 1.973, P = 0.0056; September: t = 1.663, P = 0.0172), indicating that the 

differences between morning and afternoon were caused by different species in the two 

months. This variability was reflected in the PCO and CAP ordinations (Fig. 4), which both 

indicated differences between months (Table 7), but did not separate morning and afternoon 

counts. Indeed the total allocation success rate of the discriminant analysis was not 

significantly different from random (Table 7). 

 

The species primarily responsible for differences between months (ie significantly correlated 

with the axis for Month in Fig. 4) were Sarpa salpa (Sparidae, r = -0.503) which occurred 

only in June, Diplodus annularis (Sparidae, r = -0.438) and Coris julis (Labridae, r = -0.411). 

The only species with a significant positive correlation with the axis (ie with September 

counts) was Thalassoma pavo (r = 0.679). 

 

CAP analyses done individually for each month supported the result of the t-test, with 

significant differences between the distributions of the canonical scores of morning and 

afternoon (Fig. 5, right hand side). However, as indicated by the significant interaction in the 

PerMANOVA, different species were correlated with the canonical axis in different months. 

In June, Chromis chromis and Coris julis increased significantly in density from morning to 

afternoon, whereas Symphodus mediterraneus and Symphodus tinca decreased (Fig. 6). In 

September, Thalassoma pavo increased dramatically in density from morning to afternoon, S. 

mediterraneus also increased, but Serranus scriba decreased (Fig. 6). 

 

4. Discussion 

 

This study did not indicate significant systematic bias in the enumeration of assemblages of 

demersal temperate reef fishes counted at the same locations at differing times during daylight 

hours, and thus agrees with previous work from both temperate and tropical environments 

(Colton & Alevizon 1981; Kingsford 1989; Rooker & Dennis 1991; Spyker & van den 

Berghe 1995; Thompson & Mapstone 2002). However, the acknowledged high variability 

that exists between individual transect counts of mobile reef fishes in space (Edgar et al. 
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2004) is also manifest in time, even over scales of hours. No doubt the mobility of many fish 

species means that this variability may be just as great over temporal scales of minutes. Given 

that fish move, some of them continuously, it is highly unlikely that repetition of the same 

transect will ever yield the same data as the original count. Visual counts of fishes are 

therefore not truly “repeatable”, and must always be regarded as a snapshot indication of the 

real composition and relative density of a given assemblage (Sale 1997). This is likely to be 

especially true for counts of planktivorous fishes, which are very mobile, known to change 

distribution with tidal currents (Kingsford & MacDiarmid 1988), and have very high 

variances due to the aggregation of individuals in schools. 

 

The sources of small-scale temporal bias in fish counts may arise from the fish, or from the 

observer. Because of logistic constraints and safety considerations, our studies were limited to 

daylight hours, and we were not able to repeat the counts at early dawn and dusk when 

feeding activity often peaks for some species, and fish distributions may change markedly as 

diurnally and nocturnally active species exchange places (Hobson 1965; Ebeling & Bray 

1976; Galzin 1987). That variability in fish distribution and behaviour between night and day 

can influence relative abundance estimates is well accepted by both fishery biologists (e.g. 

Francis & Williams 1995; Casey & Myers 1998) and ecologists (Hobson 1965; Doherty 1983; 

Galzin 1987; Thompson & Mapstone 2002). Some existing large-scale monitoring 

programmes explicitly require that fish counts are conducted only during daylight hours to 

avoid this source of bias (e.g. long term monitoring of the Great Barrier Reef, Halford & 

Thompson 1994). The efficiency of the observer may be impeded at dawn and dusk by low 

light levels, or efficiency may decrease during the day as the fatigue induced by multiple 

dives increases. 

 

The diel variability in the apparent abundance of some species did not have significant effects 

on the multivariate analysis, for three reasons. First, the high between-transect (ie within-

group) variability common in fish transect counts has the effect of reducing the statistical 

power of tests for between-group differences. Second, although some species may vary 

systematically in density during the day, other common members of the assemblage either do 

not vary, or vary randomly, which means that in the multivariate case, species exhibiting 

consistent temporal pattern must have large and consistent effects to avoid being masked by 

multivariate “noise”. Third, when diel patterns existed within species, they were often 

inconsistent between sites. These factors add up to mean that systematic bias generated at 
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small temporal scales in a small subset of the species in a given assemblage is unlikely to 

significantly influence the conclusions from large spatial scale surveys of assemblages of 

temperate reef fishes. However, where very common species exhibit strong systematic 

variability in activity patterns during the day (that may vary between habitats), or tidal 

changes cause redistribution of species (Kingsford & MacDiarmid 1989, Thompson & 

Mapstone 2002), sampling a particular treatment only in the morning, for example, could 

cause significant bias. 

 

It is generally not practicable to randomise replicate transects within sites with respect to time 

in large-scale fish monitoring surveys. Such surveys are generally heavily constrained with 

respect to time, funding, availability of trained personnel, and weather conditions. However, 

workers should attempt to randomise or intersperse sites in time with respect to treatments, 

whether these be water depth, habitat type, marine reserve status, or some other a priori-

defined factor depending on the hypothesis being tested. Surveys of territorial species should 

be relatively temporally consistent, but chance variation in the movements of species that 

habitually move over spatial scales greater than metres can confound comparisons of 

treatments, or the relationship of fishes to measured habitat variables. Thompson & Mapstone 

(2002) suggested that one solution is to use sampling units that are sufficiently large as to 

encompass the home range size of target species, however pointed out that such measures are 

likely to increase sampling bias and logistic difficulties. Our study used relatively short 

transects (25 m) so that sampling units could fit within habitat patches, and to enable greater 

levels of replication of the sampling unit within sites. We concur with Thompson & Mapstone 

(2002) that increasing replication at the site level (to better describe patterns of spatial 

variability) is probably preferable to taking extreme measures to account for small-scale 

temporal variability. 

 

Obviously, the degree to which temporal variability in fish behaviour may influence spatial 

comparisons should depend largely on the relative mobility of the species under investigation. 

Counts of strongly site-attached or territorial species should vary relatively little, whereas 

counts of schooling planktivores may change by an order of magnitude or more. Despite this 

expectation, we obtained significant within-day variability in the density of the black 

angelfish Parma alboscapularis – a strongly site-attached species - at two of the four New 

Zealand sites. We cannot determine if this was due to real changes in the density of this 

species during the day, to sampling errors such as slight inconsistencies in the estimation of 
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transect width between times (Harvey et al. 2004), or whether individual fish might have 

changed their behavioural response to the diver after repeated visits. Behavioural responses to 

divers occur frequently where fish are either fed (Cole 1994; Milazzo et al. in press) or hunted 

(Kulbicki 1998), but in the absence of these stimuli, repeated visits to a site by a diver should 

not normally be expected to cause significant changes in fish behaviour (De Girolamo & 

Mazzoldi 2001). An exception to this generalisation might occur when individual fish lose 

fear of divers after repeated visits, with no stimulus other than habituation. In this case, later 

density estimates will be higher than those made initially. 

 

Sampling errors may contribute as much or more to the misinterpretation of field studies as 

errors brought about by statistical errors or experimental design problems (Andrew & 

Mapstone 1987). Many of the methodological problems encountered in estimation of relative 

density of fishes are well documented elsewhere (e.g. Lincoln Smith 1989; Sale 1997; 

Thompson & Mapstone 1997, Willis & Babcock 2000; De Girolamo & Mazzoldi 2001; Edgar 

et al. 2004). Here, we are dealing with a potential sampling problem that can be obviated by 

putting a little thought into survey design. In many situations, variability in fish densities at 

small temporal scales will not influence the assessment of larger-scale spatial pattern in 

assemblage structure. However, the relative density of individual fish species can vary within 

locations at different times of day, so the randomisation of sampling order in time with 

respect to treatment should be standard practice. 
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Appendix A 

Lists of the 28 New Zealand species and 26 Mediterranean species recorded in the study, 

with their frequency of occurrence in the measured time periods. 

 

Poor Knights Islands, New Zealand. n = 24 time period-1 

  Time period 
Family Species 0730-0830 1030-1130 1400-1500
Blenniidae Plagiotremus tapeinosoma 1 0 0
Carangidae Seriola lalandi 0 0 1
Chironemidae Chironemus marmoratus 0 2 1
Kyphosidae Kyphosus bigibbus 0 0 1
 Kyphosus sydneyanus 1 0 0
Labridae Bodianus unimaculatus 13 12 9
 Coris sandageri 22 24 22
 Notolabrus celidotus 3 6 3
 Notolabrus fucicola 12 12 12
 Pseudolabrus inscriptus 4 1 3
 Pseudolabrus luculentus 7 6 6
 Pseudolabrus miles 12 11 9
 Suezichthys arquatus 0 2 0
 Suezichthys aylingi 10 10 9
Latridae Cheilodactylus spectabilis 4 2 3
 Nemadactylus douglasii 8 8 7
Monacanthidae Parika scaber 13 12 8
Mullidae Upeneichthys lineatus 10 11 12
Muraenidae Gymnothorax prasinus 1 1 1
Odacidae Odax pullus 1 3 3
Pomacentridae Parma alboscapularis 16 16 15
Scorpaenidae Scorpaena cardinalis 0 0 4
Scorpidae Scorpis violaceus 2 6 0
Serranidae Caesioperca lepidoptera 3 2 3
 Caprodon longimanus 1 0 0
 Hypoplectrodes sp B 8 4 2
Sparidae Pagrus auratus 5 7 2
Tetraodontidae Canthigaster callisterna 3 1 2

 

 

 

(continued) 
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Ustica Island, Italy. n = 16 time period-1 month-1 

  June September 
Family Species 0900-1100 1630-1830 0830-1030 1600-1800
Apogonidae Apogon imberbis 0 0 1 3
Carangidae Seriola dumerili 0 0 0 1
Labridae Coris julis 16 10 6 7
 Labrus viridis 0 2 1 1
 Labrus merula 0 0 1 1
 Symphodus mediterraneus 4 12 10 8
 Symphodus melanocercus 1 1 0 0
 Symphodus ocellatus 7 8 2 0
 Symphodus roissali 2 1 0 0
 Symphodus rostratus 0 2 2 0
 Symphodus tinca  6 13 10 12
 Thalassoma pavo 8 11 16 16
Centracanthidae Spicara maena 0 1 0 0
 Spicara flexuosa 1 0 0 0
Mugilidae Mugil spp 0 0 1 1
Mullidae Mullus surmuletus 2 2 0 0
Pomacentridae Chromis chromis 16 14 12 12
Scorpaenidae Scorpaena scrofa 0 1 0 0
Serranidae Epinephelus marginatus 4 0 1 1
 Serranus cabrilla 0 6 3 6
 Serranus scriba 13 11 8 10
Sparidae Diplodus annularis 7 8 2 2
 Diplodus puntazzo 0 0 1 0
 Diplodus vulgaris 0 2 0 3
 Oblada melanura 0 0 0 1
 Sarpa salpa 6 3 0 0
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Table 1 

Mixed-model permutational multivariate analysis of variance (PerMANOVA) on the basis of 

Bray-Curtis dissimilarities for northern New Zealand reef fish assemblages (28 species) at 

two sites surveyed three days apart.  

 

Source df SS MS F P 

Day 1 3362.8 3362.8 3.26 0.2102 

Site 1 14776.1 14776.1 9.68 0.0001 

Day × Site 1 1029.8 1029.8 0.67 0.6342 

Residual 20 30520.5 1526.0  

Total 23 49689.2  
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Table 2 

Mixed-model permutational multivariate analysis of variance (PerMANOVA) on the basis of 

Bray-Curtis dissimilarities for northern New Zealand reef fish assemblages (28 species) at 

four sites and three times of day.  

 

Source df SS MS F P 

Covariate = depth 1 2.24 2.24 16.44 0.0001 

Time 2 0.26 0.13 0.95 0.5180 

Site 3 2.48 0.83 6.05 0.0001 

Time × Site 6 0.79 0.13 0.96 0.5434 

Residual 59 8.05 0.14  

Total 71 13.82  

 

 

 



 20

Table 3 

Mixed-model permutational tests of multivariate dispersion (PermDisp) on the basis of Bray-

Curtis dissimilarities for northern New Zealand reef fish assemblages (28 species) at four sites 

and three times of day.  

 

Source df SS MS F P 

Time 2 480.62 240.31 3.04 0.1200 

Site 3 2212.00 737.33 11.13 0.0001 

Time × Site 6 473.46 78.91 1.19 0.3241 

Residual 60 3975.68 66.26  

Total 71 7141.76  
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Table 4 

Results of canonical analysis of principal coordinates (CAP) examining the effects of Site and 

Time on reef fish assemblages in New Zealand. %Var = percentage of the total variation 

explained by the first m principal coordinate axes. Allocation success = percentage of points 

correctly allocated into each group. δ2 = squared canonical correlation. 

 

Factor m %Var Allocation success (%) δ2 P

   Group 1 Group 2 Group 3 Group 4 Total  

Time 5 76.56 50.00 

(07:30) 

8.33 

(10:30) 

45.83 

(14:00) 

 34.72 0.049 0.919

Site 4 68.35 66.67 

(Aladdins) 

66.67 

(Labrid) 

88.89 

(Labyrinth)

66.67 

(Nursery)

72.22 0.757 < 0.001
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Table 5 

Correlation coefficients for individual species (|r| > 0.4) with the canonical axis for effects of 

Site (see Fig. 2).  

 

Negative correlation   Positive correlation  

Parma alboscapularis -0.75  Upeneichthys lineatus 0.49 

Pseudolabrus miles -0.63  Nemadactylus douglasii 0.48 

Notolabrus fucicola -0.59    

Coris sandageri -0.54    

Parika scaber -0.42    
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Table 6 

Mixed-model permutational multivariate analysis of variance (PerMANOVA) on the basis of 

Bray-Curtis dissimilarities for Ustica Island reef fish assemblages (26 species) at two times of 

day surveyed in two different months.  

 

Source df SS MS F P 

Covariate = depth 1 184.15 184.15 15.70 0.0001 

Time 1 27.44 27.44 0.57 0.7330 

Month 1 119.98 119.98 10.23 0.0001 

Time × Month 1 47.98 47.98 4.09 0.0022 

Residual 59 691.86 11.73  

Total 63 1071.41  
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Table 7 

Results of canonical analysis of principal coordinates (CAP) examining the effects of Month 

and Time on reef fish assemblages in Italy. %Var = percentage of the total variation explained 

by the first m principal coordinate axes. Allocation success = percentage of points correctly 

allocated into each group. δ2 = squared canonical correlation. 

 

Factor m %Var Allocation success (%) δ2 P 

   Group 1 Group 2 Total   

Time 5 85.40 46.87 

(am) 

68.75 

(pm) 

57.81 0.165 0.055 

Month 5 85.40 75.00 

(June) 

93.75 

(Sept) 

84.37 0.526 <0.001 
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Figure captions: 

 

Fig. 1. Principal coordinates (metric MDS) ordination (a) and CAP analysis (b) of New 

Zealand reef fish transect counts taken at three times of day at four sites. Percentage 

variability explained by the PC axes are given on the plot. 

 

Fig. 2. Principal coordinates (metric MDS) ordinations (left) and CAP analyses (right) of New 

Zealand reef fish transect counts taken at three times of day for each site. Percentage 

variability explained by the PC axes are given on the plot. 

 

Fig. 3. Changes in mean density of key fish species with time of day on northern New 

Zealand reefs. 

 

Fig. 4. Principal coordinates (metric MDS) ordination (a) and CAP analysis (b) of Italian reef 

fish transect counts taken at two times of day in two months. Percentage variability explained 

by the PC axes are given on the plot. 

 

Fig. 5. Principal coordinates (metric MDS) ordinations (left) and CAP analyses (right) of 

Italian reef fish transect counts taken in the morning and afternoon for each of june and 

September. Percentage variability explained by the PC axes are given on the plot. 

 

Fig. 6. Changes in mean density of key fish species with time of day on southern Italian reefs. 
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